Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Climate change is predicted to intensify lake algal blooms globally and result in regime shifts. However, observed increases in algal biomass do not consistently correlate with air temperature or precipitation, and evidence is lacking for a causal effect of climate or the nonlinear dynamics needed to demonstrate regime shifts. We modeled the causal effects of climate on annual lake chlorophyll (a measure of algal biomass) over 34 y for 24,452 lakes across broad ecoclimatic zones of the United States and evaluated the potential for regime shifts. We found that algal biomass was causally related to climate in 34% of lakes. In these cases, 71% exhibited abrupt but mostly temporary shifts as opposed to persistent changes, 13% had the potential for regime shifts. Climate was causally related to algal biomass in lakes experiencing all levels of human disturbance, but with different likelihood. Climate causality was most likely to be observed in lakes with minimal human disturbance and cooler summer temperatures that have increased over the 34 y studied. Climate causality was variable in lakes with low to moderate human disturbance, and least likely in lakes with high human disturbance, which may mask climate causality. Our results explain some of the previously observed heterogeneous climate responses of lake algal biomass globally and they can be used to predict future climate effects on lakes.more » « lessFree, publicly-accessible full text available March 4, 2026
-
Abstract A variety of classification approaches are used to facilitate understanding, prediction, monitoring, and the management of lakes. However, broad‐scale applicability of current approaches is limited by either the need for in situ lake data, incompatibilities among approaches, or a lack of empirical testing of approaches based on ex situ data. We developed a new geographic classification approach for 476,697 lakes ≥ 1 ha in the conterminous U.S. based on lake archetypes representing end members along gradients of multiple geographic features. We identified seven lake archetypes with distinct combinations of climate, hydrologic, geologic, topographic, and morphometric properties. Individual lakes were assigned weights for each of the seven archetypes such that groups of lakes with similar combinations of archetype weights tended to cluster spatially (although not strictly contiguous) and to have similar limnological properties (e.g., concentrations of nutrients, chlorophylla(Chla), and dissolved organic carbon). Further, archetype lake classification improved commonly measured limnological relationships (e.g., between nutrients and Chla) compared to a global model; a discrete archetype classification slightly outperformed an ecoregion classification; and considering lakes as continuous mixtures of archetypes in a more complex model further improved fit. Overall, archetype classification of US lakes as continuous mixtures of geographic features improved understanding and prediction of lake responses to limnological drivers and should help researchers and managers better characterize and forecast lake states and responses to environmental change.more » « less
An official website of the United States government
